Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative analysis of cathodoluminescence phenomena in InGaN/GaN QW by Monte Carlo method

Identifieur interne : 000632 ( Main/Repository ); précédent : 000631; suivant : 000633

Quantitative analysis of cathodoluminescence phenomena in InGaN/GaN QW by Monte Carlo method

Auteurs : RBID : Pascal:13-0192561

Descripteurs français

English descriptors

Abstract

In this paper, cathodoluminescence from InGaN/GaN single quantum wells grown on the facets of the GaN nano-pyramids has been quantitatively studied by Monte Carlo method. The influence of primary electron beam energy and the nanopyramid angle on generation of electron-hole pairs in individual parts of nanostructure has been studied by Monte Carlo simulations. The evolution of the GaN- and InGaN-related cathodoluminescence spectral lines with primary electron beam energy and angle of incidence has been assessed from the recombination rates in individual parts of the structure and compared with cathodoluminescence spectra measured at various beam energies. The possibility to determine the diffusion length of generated carriers in the structures like InGaN/GaN quantum wells using developed Monte Carlo simulator and CL measurements has been demonstrated.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0192561

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quantitative analysis of cathodoluminescence phenomena in InGaN/GaN QW by Monte Carlo method</title>
<author>
<name sortKey="Priesol, J" uniqKey="Priesol J">J. Priesol</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3</s1>
<s2>812 19 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>812 19 Bratislava</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Laser Centre, Ilkovičova 3</s1>
<s2>841 04 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>841 04 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Satka, A" uniqKey="Satka A">A. Satka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3</s1>
<s2>812 19 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>812 19 Bratislava</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Laser Centre, Ilkovičova 3</s1>
<s2>841 04 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>841 04 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uherek, F" uniqKey="Uherek F">F. Uherek</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3</s1>
<s2>812 19 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>812 19 Bratislava</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Laser Centre, Ilkovičova 3</s1>
<s2>841 04 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>841 04 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donoval, D" uniqKey="Donoval D">D. Donoval</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3</s1>
<s2>812 19 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>812 19 Bratislava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shields, P" uniqKey="Shields P">P. Shields</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronic and Electrical Engineering, University of Bath</s1>
<s2>Bath BA2 7AY</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Bath BA2 7AY</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Allsopp, D W E" uniqKey="Allsopp D">D. W. E. Allsopp</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electronic and Electrical Engineering, University of Bath</s1>
<s2>Bath BA2 7AY</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Bath BA2 7AY</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0192561</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0192561 INIST</idno>
<idno type="RBID">Pascal:13-0192561</idno>
<idno type="wicri:Area/Main/Corpus">000D29</idno>
<idno type="wicri:Area/Main/Repository">000632</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0169-4332</idno>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<title level="j" type="main">Applied surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cathodoluminescence</term>
<term>Diffusion length</term>
<term>Digital simulation</term>
<term>Electron beams</term>
<term>Electron hole pair</term>
<term>Facet</term>
<term>Gallium nitride</term>
<term>Incidence angle</term>
<term>Indium nitride</term>
<term>Inorganic compounds</term>
<term>Monte Carlo methods</term>
<term>Nanostructures</term>
<term>Quantitative chemical analysis</term>
<term>Quantum wells</term>
<term>Semiconductor materials</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse quantitative</term>
<term>Cathodoluminescence</term>
<term>Composé minéral</term>
<term>Composé ternaire</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Semiconducteur</term>
<term>Méthode Monte Carlo</term>
<term>Puits quantique</term>
<term>Facette</term>
<term>Faisceau électron</term>
<term>Paire électron trou</term>
<term>Nanostructure</term>
<term>Simulation numérique</term>
<term>Angle incidence</term>
<term>Longueur diffusion(transport)</term>
<term>InGaN</term>
<term>GaN</term>
<term>7860H</term>
<term>7867D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Analyse quantitative</term>
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, cathodoluminescence from InGaN/GaN single quantum wells grown on the facets of the GaN nano-pyramids has been quantitatively studied by Monte Carlo method. The influence of primary electron beam energy and the nanopyramid angle on generation of electron-hole pairs in individual parts of nanostructure has been studied by Monte Carlo simulations. The evolution of the GaN- and InGaN-related cathodoluminescence spectral lines with primary electron beam energy and angle of incidence has been assessed from the recombination rates in individual parts of the structure and compared with cathodoluminescence spectra measured at various beam energies. The possibility to determine the diffusion length of generated carriers in the structures like InGaN/GaN quantum wells using developed Monte Carlo simulator and CL measurements has been demonstrated.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>269</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quantitative analysis of cathodoluminescence phenomena in InGaN/GaN QW by Monte Carlo method</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PRIESOL (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SATKA (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>UHEREK (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DONOVAL (D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHIELDS (P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ALLSOPP (D. W. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3</s1>
<s2>812 19 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>International Laser Centre, Ilkovičova 3</s1>
<s2>841 04 Bratislava</s2>
<s3>SVK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electronic and Electrical Engineering, University of Bath</s1>
<s2>Bath BA2 7AY</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>155-160</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000173246590320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0192561</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, cathodoluminescence from InGaN/GaN single quantum wells grown on the facets of the GaN nano-pyramids has been quantitatively studied by Monte Carlo method. The influence of primary electron beam energy and the nanopyramid angle on generation of electron-hole pairs in individual parts of nanostructure has been studied by Monte Carlo simulations. The evolution of the GaN- and InGaN-related cathodoluminescence spectral lines with primary electron beam energy and angle of incidence has been assessed from the recombination rates in individual parts of the structure and compared with cathodoluminescence spectra measured at various beam energies. The possibility to determine the diffusion length of generated carriers in the structures like InGaN/GaN quantum wells using developed Monte Carlo simulator and CL measurements has been demonstrated.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H60H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Analyse quantitative</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantitative chemical analysis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cathodoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Cathodoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Méthode Monte Carlo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Monte Carlo methods</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Facette</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Facet</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Faceta</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Faisceau électron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electron beams</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Paire électron trou</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electron hole pair</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Par electrón hueco</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Angle incidence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Incidence angle</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Longueur diffusion(transport)</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Diffusion length</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7860H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fN21>
<s1>175</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000632 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000632 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0192561
   |texte=   Quantitative analysis of cathodoluminescence phenomena in InGaN/GaN QW by Monte Carlo method
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024